pubmed: autism and genetics

Subscribe to pubmed: autism and genetics feed pubmed: autism and genetics
NCBI: db=pubmed; Term=autism AND genetics
Updated: 2 hours 55 min ago

Chromatin immunoprecipitation with fixed animal tissues and preparation for high-throughput sequencing.

February 4, 2015 - 9:02am

Chromatin immunoprecipitation with fixed animal tissues and preparation for high-throughput sequencing.

Cold Spring Harb Protoc. 2015;2015(2):pdb.prot084848

Authors: Cotney JL, Noonan JP

Abstract
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) is a powerful method used to identify genome-wide binding patterns of transcription factors and distribution of various histone modifications associated with different chromatin states. In most published studies, ChIP-Seq has been performed on cultured cells grown under controlled conditions, allowing generation of large amounts of material in a homogeneous biological state. Although such studies have provided great insight into the dynamic landscapes of animal genomes, they do not allow the examination of transcription factor binding and chromatin states in adult tissues, developing embryonic structures, or tumors. Such knowledge is critical to understanding the information required to create and maintain a complex biological tissue and to identify noncoding regions of the genome directly involved in tissues affected by complex diseases such as autism. Studying these tissue types with ChIP-Seq can be challenging due to the limited availability of tissues and the lack of complex biological states able to be achieved in culture. These inherent differences require alterations of standard cross-linking and chromatin extraction typically used in cell culture. Here we describe a general approach for using small amounts of animal tissue to perform ChIP-Seq directed at histone modifications and transcription factors. Tissue is homogenized before treatment with formaldehyde to ensure proper cross-linking, and a two-step nuclear isolation is performed to increase extraction of soluble chromatin. Small amounts of soluble chromatin are then used for immunoprecipitation (IP) and prepared for multiplexed high-throughput sequencing.

PMID: 25646502 [PubMed - in process]

Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism.

February 3, 2015 - 8:19am
Related Articles

Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism.

Neurochem Int. 2014 Jul;73:192-203

Authors: Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J

Abstract
Na(+)/H(+) exchanger NHE6/SLC9A6 is an X-linked gene that is widely expressed and especially abundant in brain, heart and skeletal muscle where it is implicated in endosomal pH homeostasis and trafficking as well as maintenance of cell polarity. Recent genetic studies have identified several mutations in the coding region of NHE6 that are linked with severe intellectual disability, autistic behavior, ataxia and other abnormalities. One such defect consists of an in-frame deletion of three amino acids ((370)Trp-Ser-Thr(372), ΔWST) that adjoin the predicted ninth transmembrane helix of the exchanger. To better understand the nature of this mutation, a NHE6ΔWST construct was generated and assessed for its effects on the biochemical and cellular properties of the transporter. In transfected fibroblastic CHO and neuroblastoma SH-SY5Y cells, immunoblot analyses showed that the mutant protein was effectively synthesized, but its subsequent oligosaccharide maturation and overall half-life were dramatically reduced compared to wild-type. These changes correlated with significant accumulation of ΔWST in the endoplasmic reticulum, with only minor sorting to the plasma membrane and negligible trafficking to recycling endosomes. The diminished accumulation in recycling endosomes was associated with a significant decrease in the rate of endocytosis of cell surface ΔWST compared to wild-type. Furthermore, while ectopic expression of wild-type NHE6 enhanced the uptake of other vesicular cargo such as transferrin along the clathrin-mediated recycling endosomal pathway, this ability was lost in the ΔWST mutant. Similarly, in transfected primary mouse hippocampal neurons, wild-type NHE6 was localized in discrete puncta throughout the soma and neurites, whereas the ΔWST mutant displayed a diffuse reticular pattern. Remarkably, the extensive dendritic arborization observed in neurons expressing wild-type NHE6 was noticeably diminished in ΔWST-transfectants. These results suggest that deletion of (370)Trp-Ser-Thr(372) leads to endoplasmic reticulum retention and loss of NHE6 function which potentially impacts the trafficking of other membrane-bound cargo and cell polarity.

PMID: 24090639 [PubMed - indexed for MEDLINE]

Neuronal ablation of p-Akt at Ser473 leads to altered 5-HT1A/2A receptor function.

February 3, 2015 - 8:19am
Related Articles

Neuronal ablation of p-Akt at Ser473 leads to altered 5-HT1A/2A receptor function.

Neurochem Int. 2014 Jul;73:113-21

Authors: Saunders C, Siuta M, Robertson SD, Davis AR, Sauer J, Matthies HJ, Gresch PJ, Airey DC, Lindsley CW, Schetz JA, Niswender KD, Veenstra-Vanderweele JM, Galli A

Abstract
The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function.

PMID: 24090638 [PubMed - indexed for MEDLINE]

Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain.

February 3, 2015 - 8:19am
Related Articles

Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain.

Neurochem Int. 2014 Jul;73:122-6

Authors: Whyte A, Jessen T, Varney S, Carneiro AM

Abstract
Dysfunctions in serotonin (5-hydroxytryptamine, 5-HT) systems have been associated with several psychiatric illnesses, including anxiety, depression, obsessive-compulsive disorders and autism spectrum disorders. Convergent evidence from genetic analyses of human subjects has implicated the integrin β3 subunit gene (ITGB3) as a modulator of serotonergic systems via genetic interactions with the 5-HT transporter gene (SLC6A4, SERT). While genetic interactions may result from contributions of each gene at several levels, we hypothesize that ITGB3 modulates the 5-HT system at the level of the synapse, through the actions of integrin αvβ3. Here we utilized a genetic approach in mouse models to examine Itgb3 contributions to SERT function both in the context of normal and reduced SERT expression. As integrin αvβ3 is expressed in postsynaptic membranes, we isolated synaptoneurosomes, which maintain intact pre- and post-synaptic associations. Citalopram binding revealed significant Slc6a4-driven reductions in SERT expression in midbrain synapses, whereas no significant changes were observed in hippocampal or cortical projections. Expecting corresponding changes to SERT function, we also measured 5-HT uptake activity in synaptoneurosomal preparations. Itgb3 single heterozygous mice displayed significant reductions in 5-HT Vmax, with no changes in Km, in midbrain preparations. However, in the presence of both Itgb3 and Slc6a4 heterozygozity, 5-HT uptake was similar to wild-type levels, revealing a significant Slc6a4 by Itgb3 genetic interaction in the midbrain. Similar findings were observed in cortical preparations, whereas in the hippocampus, most Vmax changes were driven solely by Slc6a4. Our findings provide evidence that integrin αvβ3 is involved in the regulation of serotonergic systems in some, but not all 5-HT synapses, revealing novel contributions to synaptic specificity within the central nervous system.

PMID: 24083985 [PubMed - indexed for MEDLINE]

Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome.

January 31, 2015 - 6:35am

Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome.

J Mol Cell Cardiol. 2015 Jan 26;

Authors: Wemhöner K, Friedrich C, Stallmeyer B, Coffey AJ, Grace A, Zumhagen S, Seebohm G, Ortiz-Bonnin B, Rinné S, Sachse FB, Schulze-Bahr E, Decher N

Abstract
Gain-of-function mutations in CACNA1C, encoding the L-type Ca(2+) channel Cav1.2, cause Timothy syndrome (TS), a multi-systemic disorder with dysmorphic features, long-QT syndrome (LQTS) and autism spectrum disorders. TS patients have heterozygous mutations (G402S and G406R) located in the alternatively spliced exon 8, causing a gain-of-function by reduced voltage-dependence of inactivation. Screening 540 unrelated patients with non-syndromic forms of LQTS, we identified six functional relevant CACNA1C mutations in different regions of the channel. All these mutations caused a gain-of-function combining different mechanisms, including changes in current amplitude, rate of inactivation and voltage-dependence of activation or inactivation, similar as in TS. Computer simulations support the theory that the novel CACNA1C mutations prolong action potential duration. We conclude that genotype-negative LQTS patients should be investigated for mutations in CACNA1C, as a gain-of-function in Cav1.2 is likely to cause LQTS and only specific and rare mutations, i.e. in exon 8, cause the multi-systemic TS.

PMID: 25633834 [PubMed - as supplied by publisher]

Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human.

January 28, 2015 - 8:20am
Related Articles

Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human.

J Comp Neurol. 2014 Jun 15;522(9):2107-28

Authors: Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW

Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.

PMID: 24318628 [PubMed - indexed for MEDLINE]

The Emerging Picture of Autism Spectrum Disorder: Genetics and Pathology.

January 27, 2015 - 6:56am

The Emerging Picture of Autism Spectrum Disorder: Genetics and Pathology.

Annu Rev Pathol. 2015 Jan 24;10:111-144

Authors: Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH

Abstract
Autism spectrum disorder (ASD) is defined by impaired social interaction and communication accompanied by stereotyped behaviors and restricted interests. Although ASD is common, its genetic and clinical features are highly heterogeneous. A number of recent breakthroughs have dramatically advanced our understanding of ASD from the standpoint of human genetics and neuropathology. These studies highlight the period of fetal development and the processes of chromatin structure, synaptic function, and neuron-glial signaling. The initial efforts to systematically integrate findings of multiple levels of genomic data and studies of mouse models have yielded new clues regarding ASD pathophysiology. This early work points to an emerging convergence of disease mechanisms in this complex and etiologically heterogeneous disorder.

PMID: 25621659 [PubMed - as supplied by publisher]

CACNA1D De Novo Mutations in Autism Spectrum Disorders Activate Cav1.3 L-Type Calcium Channels.

January 27, 2015 - 6:56am

CACNA1D De Novo Mutations in Autism Spectrum Disorders Activate Cav1.3 L-Type Calcium Channels.

Biol Psychiatry. 2014 Dec 8;

Authors: Pinggera A, Lieb A, Benedetti B, Lampert M, Monteleone S, Liedl KR, Tuluc P, Striessnig J

Abstract
BACKGROUND: Cav1.3 voltage-gated L-type calcium channels (LTCCs) are part of postsynaptic neuronal signaling networks. They play a key role in brain function, including fear memory and emotional and drug-taking behaviors. A whole-exome sequencing study identified a de novo mutation, p.A749G, in Cav1.3 α1-subunits (CACNA1D), the second main LTCC in the brain, as 1 of 62 high risk-conferring mutations in a cohort of patients with autism and intellectual disability. We screened all published genetic information available from whole-exome sequencing studies and identified a second de novo CACNA1D mutation, p.G407R. Both mutations are present only in the probands and not in their unaffected parents or siblings.
METHODS: We functionally expressed both mutations in tsA-201 cells to study their functional consequences using whole-cell patch-clamp.
RESULTS: The mutations p.A749G and p.G407R caused dramatic changes in channel gating by shifting (~15 mV) the voltage dependence for steady-state activation and inactivation to more negative voltages (p.A749G) or by pronounced slowing of current inactivation during depolarizing stimuli (p.G407R). In both cases, these changes are compatible with a gain-of-function phenotype.
CONCLUSIONS: Our data, together with the discovery that Cav1.3 gain-of-function causes primary aldosteronism with seizures, neurologic abnormalities, and intellectual disability, suggest that Cav1.3 gain-of-function mutations confer a major part of the risk for autism in the two probands and may even cause the disease. Our findings have immediate clinical relevance because blockers of LTCCs are available for therapeutic attempts in affected individuals. Patients should also be explored for other symptoms likely resulting from Cav1.3 hyperactivity, in particular, primary aldosteronism.

PMID: 25620733 [PubMed - as supplied by publisher]

Methylphenidate improves learning impairments and hyperthermia-induced seizures caused by an Scn1a mutation.

January 27, 2015 - 6:56am
Related Articles

Methylphenidate improves learning impairments and hyperthermia-induced seizures caused by an Scn1a mutation.

Epilepsia. 2014 Oct;55(10):1558-67

Authors: Ohmori I, Kawakami N, Liu S, Wang H, Miyazaki I, Asanuma M, Michiue H, Matsui H, Mashimo T, Ouchida M

Abstract
OBJECTIVE: Developmental disorders including cognitive deficit, hyperkinetic disorder, and autistic behaviors are frequently comorbid in epileptic patients with SCN1A mutations. However, the mechanisms underlying these developmental disorders are poorly understood and treatments are currently unavailable. Using a rodent model with an Scn1a mutation, we aimed to elucidate the pathophysiologic basis and potential therapeutic treatments for developmental disorders stemming from Scn1a mutations.
METHODS: We conducted behavioral analyses on rats with the N1417H-Scn1a mutation. With high-performance liquid chromatography, we measured dopamine and its metabolites in the frontal cortex, striatum, nucleus accumbens, and midbrain. Methylphenidate was administered intraperitoneally to examine its effects on developmental disorder-like behaviors and hyperthermia-induced seizures.
RESULTS: Behavioral studies revealed that Scn1a-mutant rats had repetitive behavior, hyperactivity, anxiety-like behavior, spatial learning impairments, and motor imbalance. Dopamine levels in the striatum and nucleus accumbens in Scn1a-mutant rats were significantly lower than those in wild-type rats. In Scn1a-mutant rats, methylphenidate, by increasing dopamine levels in the synaptic cleft, improved hyperactivity, anxiety-like behavior, and spatial learning impairments. Surprisingly, methylphenidate also strongly suppressed hyperthermia-induced seizures.
SIGNIFICANCE: Dysfunction of the mesolimbic dopamine reward pathway may contribute to the hyperactivity and learning impairments in Scn1a-mutant rats. Methylphenidate was effective for treating hyperactivity, learning impairments, and hyperthermia-induced seizures. We propose that methylphenidate treatment may ameliorate not only developmental disorders but also epileptic seizures in patients with SCN1A mutations.

PMID: 25154505 [PubMed - indexed for MEDLINE]

Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology.

January 27, 2015 - 6:56am
Related Articles

Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology.

Am J Med Genet C Semin Med Genet. 2014 Jun;166C(2):156-72

Authors: Mirzaa GM, Poduri A

Abstract
Megalencephaly (MEG) is a developmental disorder characterized by brain overgrowth that occurs due to either increased number or size of neurons and glial cells. The former may be due to either increased neuronal proliferation or decreased apoptosis. The degree of brain overgrowth may be extensive, ranging from generalized MEG affecting the entire cortex-as with mutations in PTEN (phosphatase and tensin homolog on chromosome ten)-to unilateral hemispheric malformations-as in classic hemimegalencephaly (HME). On the other hand, some lesions are more focal or segmental. These developmental brain abnormalities may occur in isolation in some individuals, whereas others occur in the context of a syndrome involving dysmorphic features, skin findings, or other organ system involvement. Brain overgrowth disorders are often associated with malformations of cortical development, resulting in increased risk of epilepsy, intellectual disability, and autistic features, and some are associated with hydrocephalus. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of brain overgrowth, particularly the identification of mosaic (or post-zygotic) mutations in core components of key cellular pathways such as the phosphatidylinositol 3-kinase (PI3K)-vakt murine thymoma viral oncogene homolog (AKT)-mTOR pathway. These molecular insights have broadened our view of brain overgrowth disorders that now appear to span a wide spectrum of overlapping phenotypic, neuroimaging, and neuropathologic features and molecular pathogenesis. These molecular advances also bring to light the possibility of pathway-based therapies for these often medically devastating developmental disorders.

PMID: 24888963 [PubMed - indexed for MEDLINE]

Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.

January 27, 2015 - 6:56am
Related Articles

Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.

Hum Mol Genet. 2014 Jul 1;23(13):3481-9

Authors: Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF

Abstract
Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism.

PMID: 24501278 [PubMed - indexed for MEDLINE]

Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests.

January 27, 2015 - 6:56am
Related Articles

Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests.

Hum Mol Genet. 2014 Jul 1;23(13):3490-505

Authors: Clipperton-Allen AE, Page DT

Abstract
Accelerated head and brain growth (macrocephaly) during development is a replicated biological finding in a subset of individuals with autism spectrum disorder (ASD). However, the relationship between brain overgrowth and the behavioral and cognitive symptoms of ASD is poorly understood. The PI3K-Akt-mTOR pathway regulates cellular growth; several genes encoding negative regulators of this pathway are ASD risk factors, including PTEN. Mutations in PTEN have been reported in individuals with ASD and macrocephaly. We report that brain overgrowth is widespread in Pten germline haploinsufficient (Pten(+/-)) mice, reflecting Pten mRNA expression in the developing brain. We then ask if broad brain overgrowth translates into general or specific effects on the development of behavior and cognition by testing Pten(+/-) mice using assays relevant to ASD and comorbidities. Deficits in social behavior were observed in both sexes. Males also showed abnormalities related to repetitive behavior and mood/anxiety. Females exhibited circadian activity and emotional learning phenotypes. Widespread brain overgrowth together with selective behavioral impairments in Pten(+/-) mice raises the possibility that most brain areas and constituent cell types adapt to an altered trajectory of growth with minimal impact on the behaviors tested in our battery; however, select areas/cell types relevant to social behavior are more vulnerable or less adaptable, thus resulting in social deficits. Probing dopaminergic neurons as a candidate vulnerable cell type, we found social behavioral impairments in mice with Pten conditionally inactivated in dopaminergic neurons that are consistent with the possibility that desynchronized growth in key cell types may contribute to ASD endophenotypes.

PMID: 24497577 [PubMed - indexed for MEDLINE]

Distal trisomy 10q syndrome, report of a patient with duplicated q24.31 - qter, autism spectrum disorder and unusual features.

January 24, 2015 - 7:59am

Distal trisomy 10q syndrome, report of a patient with duplicated q24.31 - qter, autism spectrum disorder and unusual features.

Clin Case Rep. 2014 Oct;2(5):201-5

Authors: Al-Sarraj Y, Al-Khair HA, Taha RZ, Khattab N, El Sayed ZH, Elhusein B, El-Shanti H

Abstract
KEY CLINICAL MESSAGE: We report on a patient with distal trisomy 10q syndrome presenting with a few previously undescribed physical features, as well as, autism spectrum disorder (ASD). We recommend that patients with distal trisomy 10q syndrome should have a behavioral evaluation for ASD for the early institution of therapy.

PMID: 25614812 [PubMed]

Epigenetics as a basis for diagnosis of neurodevelopmental disorders: challenges and opportunities.

January 24, 2015 - 7:59am
Related Articles

Epigenetics as a basis for diagnosis of neurodevelopmental disorders: challenges and opportunities.

Expert Rev Mol Diagn. 2014 Jul;14(6):685-97

Authors: Kubota T, Miyake K, Hariya N, Mochizuki K

Abstract
Neurodevelopmental disorders, such as autism, are complex entities that can be caused by biological and social factors. In a subset of patients with congenital neurodevelopmental disorders, clear diagnosis can be achieved using DNA sequence-based analysis to identify changes in the DNA sequence (genetic variation). However, it has recently become clear that changes to the secondary modifications of DNA and histone structures (epigenetic variation) can also cause neurodevelopmental disorders via alteration of neural gene function. Moreover, it has recently been demonstrated that epigenetic modifications are more susceptible to alterations induced by environmental factors than are DNA sequences, and that some drugs commonly used reverse mental-stress induced alterations to histone modifications in neural genes. Therefore, application of diagnostic assays to detect epigenetic alterations will provide new insight into the characterization and treatment of neurodevelopmental disorders.

PMID: 24902600 [PubMed - indexed for MEDLINE]

A prenatal case of split-hand malformation associated with 17p13.3 triplication - a dilemma in genetic counseling.

January 24, 2015 - 7:59am
Related Articles

A prenatal case of split-hand malformation associated with 17p13.3 triplication - a dilemma in genetic counseling.

Eur J Med Genet. 2014 Feb;57(2-3):81-4

Authors: Luk HM, Wong VC, Lo IF, Chan KY, Lau ET, Kan AS, Tang MH, Tang WF, She WM, Chu YW, Sin WK, Chung BH

Abstract
Copy number gain of 17p13.3 has been shown to be associated with developmental delay/autism and Split-Hand-Foot malformation. We report a case of fetus with bilateral split-hand malformation detected on prenatal ultrasound. Array comparative genomic hybridization detected 2 maternally inherited copy number gains in the 17p13.3 region with one of them involving the BHLHA9 gene and part of the YWHAE gene. The mother is normal in intelligence with mild right foot anomaly only. Although the BHLHA9 copy gain is known to be associated with split-hand-foot malformation, the penetrance and expressivity is highly variable. More challenging is the effect of partial YWHAE copy number gain on neurodevelopment is inconclusive based on current literature. This case highlights the difficulties of prenatal genetic counseling in array comparative genomic hybridization findings in clinical situation with incomplete understanding of genotype-phenotype correlation.

PMID: 24380768 [PubMed - indexed for MEDLINE]

Lipo-oxytocin-1, a Novel Oxytocin Analog Conjugated with Two Palmitoyl Groups, Has Long-Lasting Effects on Anxiety-Related Behavior and Social Avoidance in CD157 Knockout Mice.

January 23, 2015 - 7:45am

Lipo-oxytocin-1, a Novel Oxytocin Analog Conjugated with Two Palmitoyl Groups, Has Long-Lasting Effects on Anxiety-Related Behavior and Social Avoidance in CD157 Knockout Mice.

Brain Sci. 2015;5(1):3-13

Authors: Mizuno A, Cherepanov SM, Kikuchi Y, Fakhrul AA, Akther S, Deguchi K, Yoshihara T, Ishihara K, Shuto S, Higashida H

Abstract
Oxytocin (OT) is a nonapeptide hormone that is secreted into the brain and blood circulation. OT has not only classical neurohormonal roles in uterine contraction and milk ejection during the reproductive phase in females, but has also been shown to have new pivotal neuromodulatory roles in social recognition and interaction in both genders. A single administration of OT through nasal spray increases mutual recognition and trust in healthy subjects and psychiatric patients, suggesting that OT is a potential therapeutic drug for autism spectrum disorders, schizophrenia, and some other psychiatric disorders. Although the mechanism is not well understood, it is likely that OT can be transported into the brain where it activates OT receptors to exert its function in the brain. However, the amount transported into the brain may be low. To ensure equivalent effects, an OT analog with long-lasting and effective blood-brain barrier penetration properties would be beneficial for use as a therapeutic drug. Here, we designed and synthesized a new oxytocin analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated at the amino group of the cysteine9 residue and the phenolic hydroxyl group of the tyrosine8 residue of the OT molecule. To determine whether LOT-1 actually has an effect on the central nervous system, we examined its effects in a CD157 knockout model mouse of the non-motor psychiatric symptoms of Parkinson's disease. Similar to OT, this analog rescued anxiety-like behavior and social avoidance in the open field test with the social target in a central arena 30 min after intraperitoneal injection in CD157 knockout mice. When examined 24 h after injection, the mice treated with LOT-1 displayed more recovery than those given OT. The results suggest that LOT-1 has a functional advantage in recovery of social behavioral impairment, such as those caused by neurodegenerative diseases, autism spectrum disorders, and schizophrenia.

PMID: 25612002 [PubMed - as supplied by publisher]

Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism.

January 23, 2015 - 7:45am

Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism.

Sci Transl Med. 2015 Jan 21;7(271):271ra8

Authors: Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH

Abstract
Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homolog of CNTNAP2 (contactin-associated protein-like 2), in which mutations cause cortical dysplasia and focal epilepsy (CDFE) syndrome, displays many features that parallel those of the human disorder. Because CDFE has high penetrance for autism spectrum disorder (ASD), we performed an in vivo screen for drugs that ameliorate abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment to rectify this deficit.

PMID: 25609168 [PubMed - in process]

Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation.

January 23, 2015 - 7:45am
Related Articles

Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation.

PLoS One. 2014;9(3):e90947

Authors: Marrale M, Albanese NN, Calì F, Romano V

Abstract
Autism Spectrum Disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies have investigated the role of de novo Copy Number Variants (CNVs) and microRNAs as important but distinct etiological factors in ASD. We developed a novel computational procedure to assess the potential pathogenic role of microRNA genes overlapping de novo CNVs in ASD patients. Here we show that for chromosomes # 1, 2 and 22 the actual number of miRNA loci affected by de novo CNVs in patients was found significantly higher than that estimated by Monte Carlo simulation of random CNV events. Out of 24 miRNA genes over-represented in CNVs from these three chromosomes only hsa-mir-4436b-1 and hsa-mir-4436b-2 have not been detected in CNVs from non-autistic subjects as reported in the Database of Genomic Variants. Altogether the results reported in this study represent a first step towards a full understanding of how a dysregulated expression of the 24 miRNAs genes affect neurodevelopment in autism. We also propose that the procedure used in this study can be effectively applied to CNVs/miRNA genes association data in other genomic disorders beyond autism.

PMID: 24667286 [PubMed - indexed for MEDLINE]

Origin and loss of nested LRRTM/α-catenin genes during vertebrate evolution.

January 23, 2015 - 7:45am
Related Articles

Origin and loss of nested LRRTM/α-catenin genes during vertebrate evolution.

PLoS One. 2014;9(2):e89910

Authors: Uvarov P, Kajander T, Airaksinen MS

Abstract
Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains.

PMID: 24587117 [PubMed - indexed for MEDLINE]

Parent-delivered touchscreen intervention for children with fragile X syndrome.

January 22, 2015 - 7:07am

Parent-delivered touchscreen intervention for children with fragile X syndrome.

Intractable Rare Dis Res. 2014 Nov;3(4):166-77

Authors: Díez-Juan M, Schneider A, Phillips T, Lozano R, Tassone F, Solomon M, Hagerman RJ

Abstract
The use of touchscreen applications for the iPad(®) allows children with disabilities to improve their personal autonomy and quality of life. In light of this emerging literature and our clinical experience with toddlers and children with Fragile X syndrome (FXS), a randomized clinical trial pilot study was conducted of whether an interactive iPad(®)-based parent training program was efficacious for both individuals with FXS and autism spectrum disorder aged 2-to-12 compared to wait-listed controls. As a second goal, we assessed the difference between direct person-to-person therapy vs. online therapy sessions through telehealth. In this case series report it is presented preliminary results of four individuals with FXS enrolled in the study and described the innovative experience including qualitative and quantitative data analysis. Furthermore, we provide professionals with specific guidelines about the use of touchscreen devices as in-home learning tools and parent training strategies to actively involve families in educational treatments in conjunction with clinical guidance.

PMID: 25606367 [PubMed]

Pages